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Abstract. The edt ing ‘residual minimimionldirect inversion in the iterative subspace’ (DIIS) 
method for the iterative calculation of low-lying eigenstates of a large matrix is further developed 
and modified. The ons method, which uses the residual minimization criterion, may fail to 
provide correct low-lying eigenspectra in the case of ill-formed matrices e.g. the momentum- 
space representation of Hamiltonian matrices of systems containing transition metal, rare earth. 
or first-row elements. We suggest the inclusion of another criterion-the vanishing of the 
overlap integral of an iterative eigenvector with already obtained low-lying eigenvectors in 
order to prevent the eigenveetor from collapsing to lower states. WO numerical examples of the 
success of onr modified nus method in conhast to the failure of the conventional DIIS method 
are presented. 

In modem electronic structure calculations, the quantum mechanical Schradinger equation 
has the form of the eigenvalue problem 

Hla)  =Ala) (1) 

where H is an N x N Hermitian matrix. The present paper concerns an improvement 
of the iterative method of diagonalizing large Hermitian matrices proposed by Wood and 
Zunger 111. We will restrict ourselves to the case of the planewave basis set [2] which 
is widely used because of its simplicity and versatility. The number of plane waves ( N )  
required in the basis set is moderate when dealing with ordinary crystalline semiconductors 
or simple metals, but becomes huge when dealing with either a supercell structure (defects, 
superlattices, surfaces, lattice dynamics, etc) or a system where more or less localized 
states are involved (materials containing first-row atoms, transition metals, or rare-earth 
elements). In the former (supercell) case, the number of plane waves is proportional to 
the number of atoms in the large unit cell, and in the latter case, the deep non-local 
pseudopotentials necessitate short-wavelength plane waves. If one is to deal with a supercell 
geometry containing first-row atoms, transition metals or rare earth metals, the number of 
basis functions grows enormously. In the past, the eigenvalue problem was usually solved 
with use of the conventional procedure by Householder [3]. There are, however, two 
representative practical difficulties with this approach. First, the entire matrix H must be 
stored in the central memory. Second, the floating-point operation count required by this 
procedure scales as N 3  even if only a fraction of the eigenvalues and eigenvectors are 
desired in actual electronic structure calculations. As a result, this procedure is restricted 
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to the order of lo3 plane-wave basis functions. In response to these serious drawbacks 
in the usual Householder method, various alternative methods have been suggested and 
applied. They can be categorized into two groups: one is the direct minimization of the 
total energy functional in the Hilbert space of wavefunctions 141, and the other is the more 
conventional iterative diagonalization of the Hamiltonian matrix [SI. We concentrate on the 
latter category in this paper. 

A number of iterative diagonalization methods have been developed over the last three 
decades, which have the twin virtues that only one row of the mahix H is required at a 
time and their floating-point operation count scales as N2.  (For pseudopotential planewave 
calculations, this can be reduced to N log, N if one uses fully separable pseudopotentials 
[6-9] and incorporates the fast Fourier transformation in the matrix-vector multiplication 
[lo, 111.) Such iterative schemes have been used to compute the desired lower part of 
the eigenspectrum. These low-lying eigenstates are composed primarily of long-wavelength 
plane waves. Therefore, if the basis vectors are ordered by the wavenumber, an initial guess 
for the desired solution is obtained by diagonalizing an NoxNo leading submatrix of H using 
the conventional Householder method. The Rayleigh-Ritz procedure [12] is commonly used 
in computing the optimal approximation to the eigensolutions of interest. This strategy has 
come to be known as the Davidson 113-IS] and the Davidson-Liu (or block Davidson) [I61 
methods in the literature. On the other hand, Bendt and Zunger [17] and Wood and Zunger 
[l] have proposed an algorithm (the DIIS method-residual minimizatioddirect inversion in 
the iterative subspace [ 10.1 I]) different from the previous ones. The main feature of the DIIS 
method lies in the use of the residual minimization criterion instead of the Ritz procedure 
in determining the optimal approximation to a desired solution. In the DIIS method, a 
correction vector ~ S X " ) ) ,  where m represents the mth iteration, is generated with use of the 
modified Jacobi relaxation scheme [l, IO]. To compute'the new approximate eigenvector 
1~:;:) = ~ ~ l , o c ~ l G x " ' )  of H. the expansion coefficients, ck's, are'chosen so that they 
can minimize the magnitude of the residual p = (xi&[ (H - haldl) lx;~;)/(x;$ I x;&). 
The requirement of minimal p leads to an expansion-space-projected (m + 1) x (m + 1) 
generalized Hermitian eigenvalue problem 

where Pki = (SX"~  H ISx")), Qkr  = (Sx"'16x") and E =hold + p. 
Now we want to point out that the DIIS method using only the residual minimization 

criterion may break down in providing correct eigenvalues and eigenvectors for ill-formed 
matrices. As long as an initial guess is reasonably close to the exact eigensolution (i.e. the 
chosen submatrix preserves the level sfiucture of the full matrix for the desired part of 
eigensolutions), it converges to the exact eigensolution. The minimum dimension of the 
submatrix No,,,jn preserving the level structure for the low-lying eigensolutions depends 
on the degree of diagonal dominance of the Hamiltonian matrix. We emphasize that the 
minimum submatrix dimension guaranteeing convergence to the correct eigensolutions can 
be too large to be solved d m t l y  by use of the Householder method for the class of 
matrices lacking diagonal dominance. This is the case for the Hamiltonian matrices of 
materials including first-row atoms, transition-metal oxides, and rare-earth compounds. In 
such situations, the aforementioned benefits of using the iterative diagonalization schemes 
reduce drastically. A more serious practical difficulty is that one does not have a good 
criterion for determining the minimum submatrix dimension applicable to general matrices. 
Noting such a possibility of failure, Martins and Troullier [ll] proposed to use the DIlS 
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method in combination with the  Ritz  procedure.  However,  their  improvement  was  not 
on the DIIS method  but on the  Ritz  procedure, i.e. they  improved the Ritz  procedure by 
employing the DIIS relaxation steps to obtain  optimally  chosen  correction  vectors. 

In contrast to their approach, we  make a modification to the DIIS algorithm itself. 
We pay  attention to the fact that a state is  fully  identified when  both the eigenvalue 
and the eigenvector are specified.  When the residual  minimization  is  used as a criterion 
for new approximate eigensolutions in the DIIS scheme, it is  implicitly  assumed  that  the 
characteristics of input guesses  have  enough  resemblance to their exact eigenvectors so 
that one can  mainly concentrate on the eigenvalues. As  is  pointed  out  above,  such  an 
assumption can  be false in dealing with  ill-formed  matrices  and cannot be  used  with 
confidence in general. Therefore, in determining  the approximate eigensolutions at each 
iteration, we examine the overlap integral of the  present iterative eigenvector with the 
already found eigenvectors for the lower-lying levels. Discarding  an eigenvector having 
a large overlap integral  with  previously  obtained eigenvectors is an  efficient  method of 
preventing an iterative eigenvector from collapsing into one of  the lower eigenvectors. 

The actual algorithm is  implemented as follows. Changes are made in the part  of the 
original DIIS algorithm where the new approximate eigenvector lxnew) = '&, ~ t l S x ( ~ ) )  is 
determined. In the DIIs method,  the  set of expansion coefficients (CO(&), cl(&),  . . . , cm(&)} 
minimizing I& - )Coldl is chosen. In the  modified DIIS (MDIIS) method, we make  an 
additional test  on the overlap integral  of  the eigenvectors. If the overlap integral of the 
new approximate eigenvector with a normalized  eigenvector corresponding to a lower 
eigenvalue is close to unity, it means  that the iterative eigenvector has collapsed into the 
lower eigenvector. In that case, we take the eigenvector corresponding to the  next  lowest 
I&--)coldl as the iterative eigenvector. This criterion is  applied to all of the lower eigenvectors. 
The rest of the procedure is the same as that of the original DIIS algorithm. At this point, we 
want to caution the reader about a remaining  problem.  Though the inclusion of the overlap 
integral criterion prevents  an  eigensolution  from collapsing to already  obtained  lower ones, 
it is still possible that  the eigensolution erroneously jumps to a higher one causing a hole 
in the eigenvalue spectrum.  Martins and Troullier [l11 invoked the combination of  Ritz 
procedure and the DIIS method to avoid  this  problem. We suggest that  taking the total 
number of states to be  calculated as 3 - 4 times the number of the desired low-lying 
eigenstates may be safe for  certain  materials,  but  it still does not always guarantee correct 
results. The following numerical exercises show  that  the iterative solutions do converge to 
the exact eigenspectrum even for an  ill-formed (i.e. far from diagonal dominance) matrix 
with  the  suggested  modification  of  the DIIS method. 

As a numerical test, we  use a matrix  of  randomly  generated elements in  which diagonal 
elements are sorted in order  of  magnitude  and  off-diagonal elements are multiplied by a 
factor of r .  The factor r is introduced as a control parameter of the degree of the diagonal 
dominance. In  figure 1, we present  the DIIS iterative evolution  of the first  five eigensolutions 
of a 70 x 70 matrix ( r  = 0.1) with a variable  submatrix size NO. When NO = 15, some 
eigenstates erroneously converge to wrong ones. Although correct convergence is achieved 
with  use  of a larger  submatrix size (NO = 45), it is  too large to claim merit in using  an 
iterative diagonalization scheme. The result of the same calculation  for NO = 15  with  use 
of the suggested MDIIS scheme in figure 2 shows the correct convergence of eigenvalues. 
Although  the  addition of the overlap integral criterion slows down the convergence,  such a 
cost is  more  than compensated for by the  use  of a much smaller submatrix. We have found 
that  the  minimum submatrix size No.,,,jn which  gives  the correct convergence in the above 
case is 42 and 11 for the DIIS and the MDllS method, respectively. 

We consider next the 3178 x 3178 Hamiltonian  matrix (corresponding to the kinetic 
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Figure 1. The DIIS iterative  evolution. The arrows  at  the  right-hand  side  represent the exact 
eigenvalues. (a)  NO = 15, the second  and  third  levels  collapse  to  the first level,  the  fourth  to 
the  third,  and  the  fifth  to  the fourth. (b )  NO = 45, all the  five  lowest  levels  converge  correctly. 

energy  cut off of 81 Ry)  of cubic ZnS  at  the L point  of  the  Brillouin  zone.  Matrix elements 
are computed  from  the  self-consistent charge density  in  the  plane-wave  basis  set. We find 
that  the MDIIS iteration  initialized by diagonalizing a leading submatrix of - 500 yields the 
lowest 40 eigensolutions correctly  apart  from  the  level  ordering.  (One  can  easily rearrange 
the  converged eigensolutions in ascending order of eigenvalues.) On  the  other  hand,  the 
DIIS scheme  requires  quite a large  submatrix size (more  than 1OOO) to obtain  the  correct 
eigenspectrum due  to the  localized  nature of  Zn  3d originated  bands. In figure  3,  the  iterative 
evolution of some  selected low-lying eigenvalues is  shown  with  use of the  initial guesses 
obtained by diagonalizing the 568 x 568 leading submatrix. The levels of the  two  highest 
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Figure 2. The MDUS iterative  evolution. For NO = 15, the  levels  converge  correctly  to the 
desired  eigenspectrum. 
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Figure 3. The  iterative  evolution of some  representative  low-lying  levels of the  cubic ZnS at 
the L point of the  Brillouin  zone. (a) The DIIS scheme;  the  erroneously  evolving  levels marked 
by '+' have  the  character of the Zn 3d  orbitals. (b) the MDUS scheme;  two Zn 3d  originated 
states  converge  correctly. 

guessed  eigenvalues  originating from the Zn 3d orbitals  converge  incorrectly with use  of 
the DIIS algorithm in figure 3(a), but these  two  levels  start  to  deviate  significantly from 
initial  guesses in the  first  few MDIIS iterations  and  converge  to  exact  levels in the  end as 
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shown in figure 3(b). Such a  substantial deviation from  the  initial guess confirms the fact 
that  high-wavenumber plane waves are required to describe localized states correctly in the 
plane-wave  basis set and, consequently, a  small-sized submatrix is not capable of  preserving 
the low-lying  level structure of the ful l  matrix. The added overlap integral  criterion forces 
such unsatisfactorily provided  initial guesses to converge to correct results. 

In summary, we  have  pointed  out  that  the DIIS method  can fail to provide the correct 
eigensolutions from an  initial guess obtained by directly diagonalizing an NO x No leading 
sub-block of H when H has no fully diagonal dominance. We suggest a  modified DllS 
scheme where  the overlap of the present iterative eigenvector with  the  lower eigenvectors 
is to be examined to avoid the collapse into one of the lower  eigenvectors. Inheriting all 
the merits  of the DIIS method,  our  modified  version  has  shown to be applicable to those 
matrices in  which  the DIIS method fails. 

This work  is  supported by the  Ministry of Science and  Technology,  the  KOSEF-NSF 
Cooperative Research Program, and the Korea Science and  Engineering  Foundation  through 
the SRC Program. 
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